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Abstract.  Software Engineering Environments (SEEs) 
are systems designed to support software development 
and maintenance, and also for supporting project control 
and management. They provide means to integrate 
developers with the software process and the supporting 
technology. Since during software development many 
information resources are produced and used, it is very 
important to add semantics to them in order to improve 
the assistance given by the environment. In this context, 
ontologies are a key enabling technology for Semantic 
SEEs (SSEEs). A SSEE can be viewed as a SEE in which 
part of the information handled has associated a formal 
meaning (semantics), augmenting its tools’ ability to work 
in conjunction with each other and with human 
developers. This paper discusses how ontologies are used 
in ODE, an Ontology-based software Development 
Environment, to make it a SSEE. 

1. Introduction 

Software development is a complex task, and thus it is 
essential to provide tool support for it. Stand alone CASE 
tools were the first initiative to provide this kind of 
support. Although these tools had significantly affected 
the practice of software development, their potential was 
limited by the difficulties involved in integrating them. 
This fact gave rise to the research in Software 
Engineering Environments (SEEs), which are integrated 
collections of tools that facilitate software engineering, 
supporting its activities across the software lifecycle [1]. 
SEEs have a history of about two decades, starting from 
supporting small fragments of the software process, until 
achieve the notion of process-centered SEEs [2].  

Throughout this history, integration has been pointed 
out as one of the main challenges in the area. As SEEs 
evolve to incorporate knowledge about application 
domains, giving rise to Domain-Oriented SEEs [3], and 
about software engineering, incorporating knowledge 
management facilities [4], the integration problem seems 
to be more and more complex. 

We believe that, to deal with this complexity, we need 
to treat semantics in SEEs, evolving them to Semantic 

SEEs (SSEEs). Semantics is related to the study of 
meaning. Ultimately, the relevance and success of an 
application system rest on what the symbols being 
manipulated by it mean in the real world. Not only what 
they mean, but, furthermore, to what extend people and 
other computer systems understand and agree with the 
meaning as implied by the system [5]. This is especially 
important to SEEs, since during software development 
many information resources are produced and used. Thus, 
it is essential to add semantics to them in order to improve 
the assistance given by the environment.  

In this context, ontologies are a key enabling 
technology for SSEEs. A SSEE can be viewed as a SEE 
in which part of the information handled has associated a 
formal meaning (semantics), given by ontologies, 
augmenting its tools’ ability to work in cooperation with 
each other and with human developers. 

This paper presents how ontologies are being used in 
ODE [6], a process-centered SEE, in order to evolve it to 
a SSEE. Section 2 discusses briefly the evolution of 
SEEs, and highlights the need to deal with semantics as 
they become more complex. Section 3 presents ODE, and 
discusses how ontologies are used in it. Section 4 presents 
related works. In section 5, we report our conclusions. 

2. Software Engineering Environments Evolution 

The first generation of CASE tools supporting software 
process activities provided support only for single 
activities, without any real means of integrating tools. The 
identification of the need for integrated support for 
software engineering activities throughout the software 
lifecycle represents the genesis of Software Engineering 
Environments (SEEs) [1].  

The first SEEs, however, did not support any notion of 
software process. To deal with this drawback, Process-
centered Software Engineering Environments (PSEEs) 
emerge, with the goal of assisting in the modeling and 
automation through enactment of software processes [2]. 

The explicit representation of software processes is 
the foundation on which modern integrated development 
environments are built [1]. But, as the complexity of 



 

 

software processes increases, SEEs have to evolve to 
offer a wider support to software developers.  

Today, the use of knowledge during software 
development is being considered very important to 
support software development activities. Several different 
kinds of knowledge are useful in this context, including 
domain knowledge, past experiences, knowledge about 
software engineering, and so on. This claim represents the 
origin for Domain-oriented SEEs (DOSEE) [3] and for 
the use of Knowledge Management (KM) in SEEs [4]. 

Nowadays knowledge is viewed as one of the most 
valuable organization’s assets, and thus, the importance of 
managing it is widely recognized. DOSEE extends the 
traditional notion of PSEE by introducing into it domain 
knowledge to guide software developers through several 
software development activities [3]. SEEs with KM 
support extends this view, allowing managing any kind of 
software engineering knowledge. Using a KM approach, 
knowledge created during software processes can be 
captured, stored, disseminated, and reused, so that better 
quality and productivity can be achieved. 

In any time of the history of SEEs, the notion of 
integration is considered to be essential. Tool integration 
is about the extent to which tools agree, and it involves 
several dimensions such as [7, 6]: 
• Presentation: refers to improving the efficiency and 

effectiveness of the user’s interaction, considering the 
environment and its tools. 

• Data: deals with the way the tools and the 
environment share data. 

• Control: aims to support sharing functionalities 
between the environment and its tools. 

• Process: intends to ensure that the tools interact 
effectively in support of a defined process, linking 
the tools and the process. 

• Knowledge: refers to managing the knowledge 
captured during the software projects, and offering 
knowledge-based support to software engineers. 

In any of these dimensions, we can see that the tools 
must share an understanding of the meaning, i.e. we need 
semantics. Semantics is often defined as the study of the 
meaning. In the case of computer-based applications, 
semantics is not only related to what the symbols being 
manipulated by an application system mean, but also to 
what extend people and other computer systems 
understand and agree with the meaning as implied by the 
system [5]. Looking semantics this way, we can clearly 
see that it pervades all the integration dimensions 
presented before: (i) presentation is directly related to the 
degree people and systems agree with the meaning of the 
human-computer interfaces; (ii) data and control 
integration are also extremely dependent on semantics, 
since tools must agree on the data structure, as well as the 
services provided by other tools and by the environment; 
(iii) process integration depends on semantics, since all 

the tools and the environment should share a common 
understanding of what is a software process; (iv) finally, 
semantics is fundamental for knowledge integration. 

Computer systems are virtually impossible without 
semantic. But the degree to which a system is 
semantically aware varies greatly [5]. If a system has a 
high degree of semantic precision (i.e. the information in 
it is semantically tagged to a specific level of 
discernment), and a high degree of semantic veracity (i.e. 
the system implements procedures to ensure that the 
information is valid), then it is said to be a highly 
semantically aware system. In fact, semantic precision 
and semantic veracity are part of a broader issue that 
looks for answering questions such as [5]: How do we 
name things, how do we form categories, how do we 
ensure some constraints, and how do these aspects affect 
the systems we build? This is the subject of ontologies. 

An ontology is a logical theory accounting for the 
intended meaning of a formal vocabulary, i.e. its 
ontological commitment to a particular conceptualization 
of the world [8]. It consists of concepts, relations, 
properties and constrains expressed as axioms [9]. 

The importance of ontologies to express semantics is 
recognized in several areas, such as Semantic Web and 
Knowledge Management [10]. These areas have in 
common the problem of continued rapid growth in 
information volume, which makes it difficult to find, 
organize, access and maintain information. The use of 
machine-processable metadata based on ontologies is 
being pointed as one of the most promising ways to deal 
with this problem. As “data about data”, metadata is 
almost pure semantics, that is, it stores the meaning of the 
data it describes [5]. 

Looking to the benefits that this approach has given to 
related areas, we claim that it can also be applied to 
evolve SEEs to Semantic SEEs. During a software 
project, many information resources are produced and 
consumed, and, in several situations, it is essential to 
establish connections between the information resources 
in order to obtain the required set of information to 
support performing an activity. In this case, ontologies 
can be used to establish a common understanding about 
the software engineering domain, application domains 
and tasks. Annotating SEE’s information resources with 
ontology-based metadata, we can add semantics to them, 
and this will enable a SEE that provides a qualitatively 
new level of services. Next, we discuss how ontologies 
are being using in ODE [6], a PSEE, in order to evolve it 
to a Semantic SEE. 

3. An Ontology-based Software Engineering 
Environment 

ODE (Ontology-based software Development 
Environment) [6] is a PSEE that is developed grounded 



 

 

on ontologies. ODE’s design premise considers that, if the 
tools in a SEE are built based on ontologies, integration 
can be improved. The same ontology is used for building 
different tools supporting related software engineering 
activities, and, if the ontologies are integrated, integration 
of tools built based on them can be highly facilitated [6].  

ODE is implemented in Java and has several tools, 
such as tools supporting software process definition, risk 
analysis, estimation, and object modeling, among others. 
The environment and some of its tools are developed 
based on some software engineering ontologies. The most 
important of them is the software process ontology [9], 
since it describes the main concepts involved in software 
processes, such as process, project, activity, artifact, 
resource, procedure, and so on. The others ontologies 
(software quality ontology, software artifact ontology, 
software risk ontology and software organization 
ontology) are integrated to it, forming a net of concepts. 
Figure 1 shows part of this ontology using an extension of 
UML. In this extension, some axioms were assigned to 
UML’s elements. For example an axiom treating 
transitivity is assigned to the aggregation notation [11].  
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Figure 1- Part of the Software Process Ontology. 

Besides the axioms associated to the notation, called 
epistemological axioms, other axioms are considered in 
this ontology (ontological axioms), such as the one that 
defines pre-activities from input and output relations [9]: 
(∀a1,a2)(∃s)(input(s,a2)∧output(s,a1))→ preactivity(a1,a2). 

Since ODE is based on ontologies and implemented in 
Java, we needed to map ontologies into object models. 
This mapping was done based on the systematic approach 
for deriving object models from ontologies, described in 
[12]. In order to maintain the semantic binding among 
ODE’s objects and, thus, to incorporate ontologies in it, 
its conceptual architecture1 was designed in three levels: 

                                                 
1 The term “conceptual architecture” is being used to designate a 
high level decomposition of the ODE’s packages, in opposition 
with the actual software architecture in layers used to effectively 
implement the environment. 

• The Ontological Level (OL) concerns describing 
ontologies. Its model corresponds to the ODE’s meta-
ontology. Thus, the main goal of the OL is to register 
ontologies in ODE. Its instances are used to guide the 
definition of the other levels, originating the main 
classes of both the meta-level and the base level. 

• The Meta-level (ML) encompasses the classes that 
describe knowledge about some part of the software 
engineering domain. Its classes are derived from the 
ontologies, and the corresponding instances act as 
knowledge about the objects in the base level. ML 
classes are directly derived from the ontologies. 

• The Base Level (BL) defines the classes that 
implement ODE’s applications, i.e. its tools and 
functionalities. Several of its classes are also derived 
from the ontologies, but, typically, they incorporate 
other details that are necessary only to implement 
applications, and thus that are not described in the 
ontologies. Thus, the BL also contains classes, 
associations, attributes and operations that do not 
have a counterpart in the ontological and meta levels. 

This approach facilitates the establishment of a 
correlation between objects in the three levels, since one 
level serves as metadata for the others. Thus, it is possible 
to annotate the objects with semantic information given 
by the ontologies, as discussed next. 

 
Describing Ontologies in the Ontological Level 
To allow defining ontologies in ODE, a graphical 
ontology editor, called ODEd [11] was developed. ODEd 
supports ontology development through defining 
concepts, relations, properties, and axioms. ODEd uses 
the meta-ontology model shown in Figure 2 to store 
ontologies in the ontological level. This model is design 
using the Meta-Object Facility (MOF) model [13]. 
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Figure 2- Part of ODEd’s Meta-Ontology class model. 

At this level, instances of these classes represent the 
elements of an ontology in ODE. Taking as example the 
software process ontology, we have the Software Process 
Ontology itself as an instance of the Ontology class; 
Activity and Resource are instances of the Concept class; 
input, output, and  pre-activity are examples of instances 



 

 

of the Relation class; and, finally, there are, some 
competence questions and axioms (not shown 
graphically), which are treated as instances of 
CompetenceQuestion and Axiom classes, respectively. 
 
Deriving Meta / Base Level Classes from Ontologies 
Once an ontology is defined at the ontological level, it is 
possible to derive the objects models for the other two 
levels. Following the derivation approach proposed in 
[12] concepts, relations and properties are mapped, 
respectively, to classes, associations and attributes in an 
object model. Moreover, axioms are mapped to methods. 

Since ODE’s conceptual architecture has, beyond the 
ontological level, other two levels, the derivation process 
does not originate just one object model, but two. Thus, in 
the derivation process, a certain concept can originate a 
class only at the meta level, only at the base level, or at 
both levels. Table 1 shows this mapping for the part of the 
software process ontology shown in Figure 1. Figures 3 
and 4 show respectively the object model derived for the 
Meta and the Base levels. It should be pointed out that the 
meta-level classes are named with the prefix K, and they 
are subclasses of a Knowledge class. Following, we 
discuss the rationale behind this mapping. 

Table 1. Concepts and the classes derived from them. 

Concepts Meta Level Classes BaseLevel Classes 
Activity KActivity Activity 
Artifact KArtifact Artifact 
Human Resource KHumanResource HumanResource 
Procedure KProcedure - 
Project - Project 
Process KProcess Process 
 
• Classes are created at the both levels. 

Many times, a concept should give rise to classes at 
both levels: at the meta-level (ML), determining the 
“type” of concrete objects of the real world, and at the 
base level (BL), representing the real world objects 
themselves. In this case, ML objects are used to describe 
knowledge about the BL objects. For instance, as shown 
in Table 1, the Human Resource concept, which is an 
instance of the Concept class in the ontological level, 
originates two classes: KHumanResource and 
HumanResource. The first class represents the kinds of 
human resources potentially important in software 
processes, such as Software Engineer, Project Manager, 
etc. These instances of the meta-level are used to classify 
the concrete objects in the base level (John, Mary, Peter, 
Ann, etc). This way, it is possible to know that John is a 
Software Engineer, which is a Human Resource. 

In an analogous way, the Activity concept originates 
the classes KActivity and Activity, which can be 
used to describe, respectively, activities types (for 
instance, Planning, Requirements Specification, etc) and 

concrete activities performed in the context of a specific 
project (for instance, Initial Planning of the X Project, 
Preliminary Requirements Specification of the X Project, 
etc). In this case, once the Activity class is annotated 
with a reference to an instance of the KActivity class 
(see Figure 4), it is possible to point that Initial Planning 
of the X Project is an activity of the Planning type.  
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Figure 3- Software Process Meta-Level Model. 
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Figure 4- Software Process Base Level Model. 

Once the software process ontology defines that 
“activities use resources”, we say in the meta-level, that 
activities of the type Requirements Specification require 
human resources of the type Software Engineer. During 
human resources allocation to a specific project, e.g. X 
Project, this information is used to point that the 
Preliminary Requirements Specification of the X Project 
activity can allocate John (a Software Engineer), since he 
is a human resource compatible with the needs for 
performing this activity. Thus, the meta-level is used to 
guide the accomplishment of the base level activities. 

 
• A class is created only at the Meta/Base Level 

Some concepts may be relevant only in one of the 
other two levels.  In this case, if it is an abstract entity, 
only one class is created in the Meta-Level. For example, 
the concept Procedure has instances as Use Case 



 

 

Modeling, Code Inspection, etc. These instances describe 
knowledge about abstract procedures generally adopted 
when an activity is performed. They are enough for both 
the meta and the base levels. That is, it is possible to say, 
at the meta-level, that activities of the Requirements 
Specification type can adopt the Use Case Modeling 
technique. On other hand, at the base level, we can also 
say that the Preliminary Requirements Specification of the 
X Project is accomplished applying Use Case Modeling. 
Since the derived class describes knowledge about the 
procedures that can be adopted in software development, 
it is created only at the meta-level (KProcedure). As the 
base level has access to the meta-level, it can use this 
class when necessary. 

On the other hand, in some cases, certain concepts 
should derive classes only at the base level. This happens 
when the concept has only one relevant level of instances 
and it can be viewed as a concrete entity. In this case, 
those instances are important only for the base level, 
because a type is not necessary, but the real world 
concrete objects are. This is the case of the Project 
concept. A project is a concrete entity, like X Project. 
Thus, this concept is mapped only to the base level, 
originating the Project class. 

Focusing on the dependencies among ODE’s levels, 
we can see that the base level depends on the meta-level, 
which in turns depends on the ontological level. These 
dependencies occur because, when applicable, a base 
level class has an association with its correspondent class 
at the meta-level (shown in Figure 4 as attributes), which, 
in turns, is associated to its concept in the ontological 
level (through a static reference in the Knowledge class, 
as shown in Figure 3). This way, we annotate ontology 
concepts in ODE’s objects. This annotation allows 
identifying the concept from which an object is derived 
from. Thus, the navigation among the levels is simplified 
and several environment tasks (such as process definition 
and resource allocation) are better supported, some of 
them using inferences. 

The potential of ontologies can be broadly explored if 
their axioms are used to derive knowledge through 
inferences. Although axioms can be mapped to methods, 
in some cases, a more interesting approach is to map 
axioms to rules that could be manipulated by inference 
engines. To deal with this, ODE has an inference layer, 
which allows describing rules and facts in Prolog.  

As an example of the use of inferences in ODE, 
consider the following axiom of the software process 
ontology: (∀ a,b,r)(use(a,r)∧ subactivity(a,b))→ use (b,r). 
This axiom says that if an activity a uses a resource r, and 
a is a sub-activity of another activity b, then b also uses r. 
This axiom was mapped to the rules shown in Figure 5, 
which are used during process definition to present 
suggestions of resources that a certain activity can use. 

% Sub-activity Rule (A is sub-activity of B) 
subActivity(A, B) :- subActivity_(A, B). 
subActivity(A, B) :- subActivity_(A, X), 

subActivity(X, B). 
% Resource Rule (Activity Y uses Resource R) 
use(Y, R):- subActivity(Z, Y), use(Z, R). 

Figure 5- Some Prolog rules converted from axioms. 

It is worthwhile to point out that the determination of 
which activities can use which resources is made not only 
using these axioms, but also using the ontological 
annotations. From a concrete activity, it is possible to go 
to the meta-level (through its KActivity) and determine 
which types of human resources are required to perform 
this type of activity (the rules above are used in this step). 
Knowing which types of human resources are necessary, 
the human resource allocation tool suggests some human 
resources (base level) that plays the required role. 

In several other situations, this approach is applied. To 
illustrate a situation where the three annotation levels are 
used, let’s take a look at knowledge retrieval in ODE’s 
Knowledge Management (KM) infrastructure [4], 
partially shown in Figure 6. When searching for some 
knowledge items stored in ODE’s organizational memory, 
several filtering criteria can be used. One of the most 
important criteria, however, is the ontology itself. The 
user can select the ontology and some of its concepts that 
are related to the items he/she wants to search for 
(ontological level). Then, instances of these concepts are 
listed (objects from the meta-level), and the user can 
select the “types” of the items wanted. Based on that, 
artifacts and other knowledge items (objects from the base 
level) are retrieved and presented.  

In the example of Figure 6, the user selected the 
software process ontology and the activity concept as 
retrieval criteria. Instances of this concept (instances of 
the class KActivity) are presented and he/she can select 
the ones that refer to the items he/she is looking for. 
Based on the selected instances of the meta-level (in the 
example, Planning and Estimation), knowledge items 
(instances of the base level) are presented, including 
artifacts (project plans) and lessons learned and packages 
of messages related to Planning and Estimation. 

 

 
Figure 6- Search Service of ODE's KM Infrastructure. 



 

 

4. Related Work 

Few works have explored semantic issues in SEEs. 
Brown and McDermid [14] were ones of the firsts to talk 
about that. They proposed a classification of tool 
integration levels that includes what they call “semantic 
level”, which could be achieve through including 
metadata in the SEE’s repository. 

More recently, Oliveira et al. [3] proposed the use of 
ontologies in Domain Oriented SEEs, and use the TABA 
Workstation to apply their ideas. Moreover, in the context 
of TABA Project, ontologies are also used to structure the 
environment and to support knowledge management [15]. 
However, the use of ontologies in TABA does not 
consider some aspects that we advocate as very important, 
such as incorporating constraints defined as axioms and 
the use of inferences to support the accomplishment of 
some software development activities. 

Concerning the way how ODE uses metadata based on 
ontologies, it was defined based on several works done in 
the ontology field of study, such as the one done by 
Guarino [8]. Also, our approach is in conformity with the 
OMG Meta-modeling Architecture [13]. The base level 
corresponds to the User Object Layer (M0), the meta-
level to the Model (Metadata) Layer (M1), the ontological 
level to the Meta-model Layer (M2), and the MOF model 
to the Meta-meta-model Layer (M3). 

5. Conclusions 

During the software development, many information 
resources are produced and generated. In several 
situations, it is essential to establish connections between 
them in order to “collect the dots”, i.e. to get a set of items 
that are useful to support the accomplishment of an 
activity. In this context, it is very important to capture the 
semantics of the items in the SEE’s repositories, evolving 
them to Semantic SEEs. Ontologies play a crucial role to 
Semantic SEEs, since they can be used to annotate 
information resources with semantic metadata. 

In this paper, we presented our approach to evolve 
ODE, a Process-centered SEE, to a Semantic SEE. This 
approach is based on annotating ODE’s objects with 
ontology-based metadata, and proved to be very useful. 
But, some aspects should be improved. First, we should 
investigate better ways to incorporate inference services 
in ODE. The use of Prolog showed to be not enough for 
our purposes. Some studies to use other inference 
mechanisms and a modern ontology language, such as 
OWL, and are being made. Other research directions that 
we are following include improving our approach to 
derive object models from ontologies and other 
mechanisms to support ontology-based browsing of 
ODE’s resource information, such as semantic maps. 
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