

Using Ontologies to Add Semantics to a Software Engineering Environment

Ricardo de Almeida Falbo, Fabiano Borges Ruy, Rodrigo Dal Moro
Computer Science Department, Federal University of Espírito Santo

Fernando Ferrari Avenue, CEP 29060-900, Vitória - ES - Brazil
{falbo, fruy}@inf.ufes.br

Abstract. Software Engineering Environments (SEEs)
are systems designed to support software development
and maintenance, and also for supporting project control
and management. They provide means to integrate
developers with the software process and the supporting
technology. Since during software development many
information resources are produced and used, it is very
important to add semantics to them in order to improve
the assistance given by the environment. In this context,
ontologies are a key enabling technology for Semantic
SEEs (SSEEs). A SSEE can be viewed as a SEE in which
part of the information handled has associated a formal
meaning (semantics), augmenting its tools’ ability to work
in conjunction with each other and with human
developers. This paper discusses how ontologies are used
in ODE, an Ontology-based software Development
Environment, to make it a SSEE.

1. Introduction

Software development is a complex task, and thus it is
essential to provide tool support for it. Stand alone CASE
tools were the first initiative to provide this kind of
support. Although these tools had significantly affected
the practice of software development, their potential was
limited by the difficulties involved in integrating them.
This fact gave rise to the research in Software
Engineering Environments (SEEs), which are integrated
collections of tools that facilitate software engineering,
supporting its activities across the software lifecycle [1].
SEEs have a history of about two decades, starting from
supporting small fragments of the software process, until
achieve the notion of process-centered SEEs [2].

Throughout this history, integration has been pointed
out as one of the main challenges in the area. As SEEs
evolve to incorporate knowledge about application
domains, giving rise to Domain-Oriented SEEs [3], and
about software engineering, incorporating knowledge
management facilities [4], the integration problem seems
to be more and more complex.

We believe that, to deal with this complexity, we need
to treat semantics in SEEs, evolving them to Semantic

SEEs (SSEEs). Semantics is related to the study of
meaning. Ultimately, the relevance and success of an
application system rest on what the symbols being
manipulated by it mean in the real world. Not only what
they mean, but, furthermore, to what extend people and
other computer systems understand and agree with the
meaning as implied by the system [5]. This is especially
important to SEEs, since during software development
many information resources are produced and used. Thus,
it is essential to add semantics to them in order to improve
the assistance given by the environment.

In this context, ontologies are a key enabling
technology for SSEEs. A SSEE can be viewed as a SEE
in which part of the information handled has associated a
formal meaning (semantics), given by ontologies,
augmenting its tools’ ability to work in cooperation with
each other and with human developers.

This paper presents how ontologies are being used in
ODE [6], a process-centered SEE, in order to evolve it to
a SSEE. Section 2 discusses briefly the evolution of
SEEs, and highlights the need to deal with semantics as
they become more complex. Section 3 presents ODE, and
discusses how ontologies are used in it. Section 4 presents
related works. In section 5, we report our conclusions.

2. Software Engineering Environments Evolution

The first generation of CASE tools supporting software
process activities provided support only for single
activities, without any real means of integrating tools. The
identification of the need for integrated support for
software engineering activities throughout the software
lifecycle represents the genesis of Software Engineering
Environments (SEEs) [1].

The first SEEs, however, did not support any notion of
software process. To deal with this drawback, Process-
centered Software Engineering Environments (PSEEs)
emerge, with the goal of assisting in the modeling and
automation through enactment of software processes [2].

The explicit representation of software processes is
the foundation on which modern integrated development
environments are built [1]. But, as the complexity of

software processes increases, SEEs have to evolve to
offer a wider support to software developers.

Today, the use of knowledge during software
development is being considered very important to
support software development activities. Several different
kinds of knowledge are useful in this context, including
domain knowledge, past experiences, knowledge about
software engineering, and so on. This claim represents the
origin for Domain-oriented SEEs (DOSEE) [3] and for
the use of Knowledge Management (KM) in SEEs [4].

Nowadays knowledge is viewed as one of the most
valuable organization’s assets, and thus, the importance of
managing it is widely recognized. DOSEE extends the
traditional notion of PSEE by introducing into it domain
knowledge to guide software developers through several
software development activities [3]. SEEs with KM
support extends this view, allowing managing any kind of
software engineering knowledge. Using a KM approach,
knowledge created during software processes can be
captured, stored, disseminated, and reused, so that better
quality and productivity can be achieved.

In any time of the history of SEEs, the notion of
integration is considered to be essential. Tool integration
is about the extent to which tools agree, and it involves
several dimensions such as [7, 6]:
• Presentation: refers to improving the efficiency and

effectiveness of the user’s interaction, considering the
environment and its tools.

• Data: deals with the way the tools and the
environment share data.

• Control: aims to support sharing functionalities
between the environment and its tools.

• Process: intends to ensure that the tools interact
effectively in support of a defined process, linking
the tools and the process.

• Knowledge: refers to managing the knowledge
captured during the software projects, and offering
knowledge-based support to software engineers.

In any of these dimensions, we can see that the tools
must share an understanding of the meaning, i.e. we need
semantics. Semantics is often defined as the study of the
meaning. In the case of computer-based applications,
semantics is not only related to what the symbols being
manipulated by an application system mean, but also to
what extend people and other computer systems
understand and agree with the meaning as implied by the
system [5]. Looking semantics this way, we can clearly
see that it pervades all the integration dimensions
presented before: (i) presentation is directly related to the
degree people and systems agree with the meaning of the
human-computer interfaces; (ii) data and control
integration are also extremely dependent on semantics,
since tools must agree on the data structure, as well as the
services provided by other tools and by the environment;
(iii) process integration depends on semantics, since all

the tools and the environment should share a common
understanding of what is a software process; (iv) finally,
semantics is fundamental for knowledge integration.

Computer systems are virtually impossible without
semantic. But the degree to which a system is
semantically aware varies greatly [5]. If a system has a
high degree of semantic precision (i.e. the information in
it is semantically tagged to a specific level of
discernment), and a high degree of semantic veracity (i.e.
the system implements procedures to ensure that the
information is valid), then it is said to be a highly
semantically aware system. In fact, semantic precision
and semantic veracity are part of a broader issue that
looks for answering questions such as [5]: How do we
name things, how do we form categories, how do we
ensure some constraints, and how do these aspects affect
the systems we build? This is the subject of ontologies.

An ontology is a logical theory accounting for the
intended meaning of a formal vocabulary, i.e. its
ontological commitment to a particular conceptualization
of the world [8]. It consists of concepts, relations,
properties and constrains expressed as axioms [9].

The importance of ontologies to express semantics is
recognized in several areas, such as Semantic Web and
Knowledge Management [10]. These areas have in
common the problem of continued rapid growth in
information volume, which makes it difficult to find,
organize, access and maintain information. The use of
machine-processable metadata based on ontologies is
being pointed as one of the most promising ways to deal
with this problem. As “data about data”, metadata is
almost pure semantics, that is, it stores the meaning of the
data it describes [5].

Looking to the benefits that this approach has given to
related areas, we claim that it can also be applied to
evolve SEEs to Semantic SEEs. During a software
project, many information resources are produced and
consumed, and, in several situations, it is essential to
establish connections between the information resources
in order to obtain the required set of information to
support performing an activity. In this case, ontologies
can be used to establish a common understanding about
the software engineering domain, application domains
and tasks. Annotating SEE’s information resources with
ontology-based metadata, we can add semantics to them,
and this will enable a SEE that provides a qualitatively
new level of services. Next, we discuss how ontologies
are being using in ODE [6], a PSEE, in order to evolve it
to a Semantic SEE.

3. An Ontology-based Software Engineering
Environment

ODE (Ontology-based software Development
Environment) [6] is a PSEE that is developed grounded

on ontologies. ODE’s design premise considers that, if the
tools in a SEE are built based on ontologies, integration
can be improved. The same ontology is used for building
different tools supporting related software engineering
activities, and, if the ontologies are integrated, integration
of tools built based on them can be highly facilitated [6].

ODE is implemented in Java and has several tools,
such as tools supporting software process definition, risk
analysis, estimation, and object modeling, among others.
The environment and some of its tools are developed
based on some software engineering ontologies. The most
important of them is the software process ontology [9],
since it describes the main concepts involved in software
processes, such as process, project, activity, artifact,
resource, procedure, and so on. The others ontologies
(software quality ontology, software artifact ontology,
software risk ontology and software organization
ontology) are integrated to it, forming a net of concepts.
Figure 1 shows part of this ontology using an extension of
UML. In this extension, some axioms were assigned to
UML’s elements. For example an axiom treating
transitivity is assigned to the aggregation notation [11].

Artifact
<<Concept>>

Resource
<<Concept>>

Process
<<Concept>>

Human Resource
<<Concept>>

Project
<<Concept>>

10..1 10..1

implementation

Activity
<<Concept>>

0..*

0..*

0..*

0..*

output

0..1
0..*

0..1

sub-activity

0..*

0..*

0..*

0..*

0..*
input

0..*
0..*

0..*
0..* use

10..* 10..*

0..*
0..*

0..*
0..* preactivity

Procedure
<<Concept>>0..*

0..*

0..*

0..*

possible adoption

Figure 1- Part of the Software Process Ontology.

Besides the axioms associated to the notation, called
epistemological axioms, other axioms are considered in
this ontology (ontological axioms), such as the one that
defines pre-activities from input and output relations [9]:
(∀a1,a2)(∃s)(input(s,a2)∧output(s,a1))→ preactivity(a1,a2).

Since ODE is based on ontologies and implemented in
Java, we needed to map ontologies into object models.
This mapping was done based on the systematic approach
for deriving object models from ontologies, described in
[12]. In order to maintain the semantic binding among
ODE’s objects and, thus, to incorporate ontologies in it,
its conceptual architecture1 was designed in three levels:

1 The term “conceptual architecture” is being used to designate a
high level decomposition of the ODE’s packages, in opposition
with the actual software architecture in layers used to effectively
implement the environment.

• The Ontological Level (OL) concerns describing
ontologies. Its model corresponds to the ODE’s meta-
ontology. Thus, the main goal of the OL is to register
ontologies in ODE. Its instances are used to guide the
definition of the other levels, originating the main
classes of both the meta-level and the base level.

• The Meta-level (ML) encompasses the classes that
describe knowledge about some part of the software
engineering domain. Its classes are derived from the
ontologies, and the corresponding instances act as
knowledge about the objects in the base level. ML
classes are directly derived from the ontologies.

• The Base Level (BL) defines the classes that
implement ODE’s applications, i.e. its tools and
functionalities. Several of its classes are also derived
from the ontologies, but, typically, they incorporate
other details that are necessary only to implement
applications, and thus that are not described in the
ontologies. Thus, the BL also contains classes,
associations, attributes and operations that do not
have a counterpart in the ontological and meta levels.

This approach facilitates the establishment of a
correlation between objects in the three levels, since one
level serves as metadata for the others. Thus, it is possible
to annotate the objects with semantic information given
by the ontologies, as discussed next.

Describing Ontologies in the Ontological Level
To allow defining ontologies in ODE, a graphical
ontology editor, called ODEd [11] was developed. ODEd
supports ontology development through defining
concepts, relations, properties, and axioms. ODEd uses
the meta-ontology model shown in Figure 2 to store
ontologies in the ontological level. This model is design
using the Meta-Object Facility (MOF) model [13].

{xor}

Axiom CompetenceQuestion

Ontology

1

0..*

1

0..*

1

0..*

1

0..*

PropertyModelElement
(from MOF)

Classifier
(from MOF)

Association
(from MOF)

Package
(from MOF)

Attribute
(from MOF)

Concept

1..*

0..*

1..*

0..*

1

0..*

1

0..*
Relation

0..* 10..* 1

0..*

2..*

0..*

2..*

Figure 2- Part of ODEd’s Meta-Ontology class model.

At this level, instances of these classes represent the
elements of an ontology in ODE. Taking as example the
software process ontology, we have the Software Process
Ontology itself as an instance of the Ontology class;
Activity and Resource are instances of the Concept class;
input, output, and pre-activity are examples of instances

of the Relation class; and, finally, there are, some
competence questions and axioms (not shown
graphically), which are treated as instances of
CompetenceQuestion and Axiom classes, respectively.

Deriving Meta / Base Level Classes from Ontologies
Once an ontology is defined at the ontological level, it is
possible to derive the objects models for the other two
levels. Following the derivation approach proposed in
[12] concepts, relations and properties are mapped,
respectively, to classes, associations and attributes in an
object model. Moreover, axioms are mapped to methods.

Since ODE’s conceptual architecture has, beyond the
ontological level, other two levels, the derivation process
does not originate just one object model, but two. Thus, in
the derivation process, a certain concept can originate a
class only at the meta level, only at the base level, or at
both levels. Table 1 shows this mapping for the part of the
software process ontology shown in Figure 1. Figures 3
and 4 show respectively the object model derived for the
Meta and the Base levels. It should be pointed out that the
meta-level classes are named with the prefix K, and they
are subclasses of a Knowledge class. Following, we
discuss the rationale behind this mapping.

Table 1. Concepts and the classes derived from them.

Concepts Meta Level Classes BaseLevel Classes
Activity KActivity Activity
Artifact KArtifact Artifact
Human Resource KHumanResource HumanResource
Procedure KProcedure -
Project - Project
Process KProcess Process

• Classes are created at the both levels.

Many times, a concept should give rise to classes at
both levels: at the meta-level (ML), determining the
“type” of concrete objects of the real world, and at the
base level (BL), representing the real world objects
themselves. In this case, ML objects are used to describe
knowledge about the BL objects. For instance, as shown
in Table 1, the Human Resource concept, which is an
instance of the Concept class in the ontological level,
originates two classes: KHumanResource and
HumanResource. The first class represents the kinds of
human resources potentially important in software
processes, such as Software Engineer, Project Manager,
etc. These instances of the meta-level are used to classify
the concrete objects in the base level (John, Mary, Peter,
Ann, etc). This way, it is possible to know that John is a
Software Engineer, which is a Human Resource.

In an analogous way, the Activity concept originates
the classes KActivity and Activity, which can be
used to describe, respectively, activities types (for
instance, Planning, Requirements Specification, etc) and

concrete activities performed in the context of a specific
project (for instance, Initial Planning of the X Project,
Preliminary Requirements Specification of the X Project,
etc). In this case, once the Activity class is annotated
with a reference to an instance of the KActivity class
(see Figure 4), it is possible to point that Initial Planning
of the X Project is an activity of the Planning type.

Knowledge

$ concept : Concept

KHumanResource
KProcedure

KProcess

KResource

KArtifact KActivity

0..*

0..*

0..*

0..* possible adoption

0..* 0..10..* 0..1

0..* 0..*0..* 0..*
use

0..*
0..*

0..*

sub-activity
0..*

0..*0..* 0..*0..*
output

0..* 0..*0..* 0..*
input

0..*0..*
preactivity

0..* 0..*

Figure 3- Software Process Meta-Level Model.

Artifact
type : KArtifact

Resource
type : KResource

Process
type : KProcess

Project1
0..1

1
0..1

implementation

HumanResource

KProcedure
(from Knowledge)

Activity
type : KActivity

0..*

0..*

0..*

0..*

output 0..*

0..*

0..*

0..*

input

0..* 0..*0..* 0..*use

0..1 0..*0..1

subactivity

0..*

1

1..*

1

1..*

0..*

0..*

0..*

0..*
adoption

0..*

0..*0..*

0..*

preactivity

Figure 4- Software Process Base Level Model.

Once the software process ontology defines that
“activities use resources”, we say in the meta-level, that
activities of the type Requirements Specification require
human resources of the type Software Engineer. During
human resources allocation to a specific project, e.g. X
Project, this information is used to point that the
Preliminary Requirements Specification of the X Project
activity can allocate John (a Software Engineer), since he
is a human resource compatible with the needs for
performing this activity. Thus, the meta-level is used to
guide the accomplishment of the base level activities.

• A class is created only at the Meta/Base Level

Some concepts may be relevant only in one of the
other two levels. In this case, if it is an abstract entity,
only one class is created in the Meta-Level. For example,
the concept Procedure has instances as Use Case

Modeling, Code Inspection, etc. These instances describe
knowledge about abstract procedures generally adopted
when an activity is performed. They are enough for both
the meta and the base levels. That is, it is possible to say,
at the meta-level, that activities of the Requirements
Specification type can adopt the Use Case Modeling
technique. On other hand, at the base level, we can also
say that the Preliminary Requirements Specification of the
X Project is accomplished applying Use Case Modeling.
Since the derived class describes knowledge about the
procedures that can be adopted in software development,
it is created only at the meta-level (KProcedure). As the
base level has access to the meta-level, it can use this
class when necessary.

On the other hand, in some cases, certain concepts
should derive classes only at the base level. This happens
when the concept has only one relevant level of instances
and it can be viewed as a concrete entity. In this case,
those instances are important only for the base level,
because a type is not necessary, but the real world
concrete objects are. This is the case of the Project
concept. A project is a concrete entity, like X Project.
Thus, this concept is mapped only to the base level,
originating the Project class.

Focusing on the dependencies among ODE’s levels,
we can see that the base level depends on the meta-level,
which in turns depends on the ontological level. These
dependencies occur because, when applicable, a base
level class has an association with its correspondent class
at the meta-level (shown in Figure 4 as attributes), which,
in turns, is associated to its concept in the ontological
level (through a static reference in the Knowledge class,
as shown in Figure 3). This way, we annotate ontology
concepts in ODE’s objects. This annotation allows
identifying the concept from which an object is derived
from. Thus, the navigation among the levels is simplified
and several environment tasks (such as process definition
and resource allocation) are better supported, some of
them using inferences.

The potential of ontologies can be broadly explored if
their axioms are used to derive knowledge through
inferences. Although axioms can be mapped to methods,
in some cases, a more interesting approach is to map
axioms to rules that could be manipulated by inference
engines. To deal with this, ODE has an inference layer,
which allows describing rules and facts in Prolog.

As an example of the use of inferences in ODE,
consider the following axiom of the software process
ontology: (∀ a,b,r)(use(a,r)∧ subactivity(a,b))→ use (b,r).
This axiom says that if an activity a uses a resource r, and
a is a sub-activity of another activity b, then b also uses r.
This axiom was mapped to the rules shown in Figure 5,
which are used during process definition to present
suggestions of resources that a certain activity can use.

% Sub-activity Rule (A is sub-activity of B)
subActivity(A, B) :- subActivity_(A, B).
subActivity(A, B) :- subActivity_(A, X),

subActivity(X, B).
% Resource Rule (Activity Y uses Resource R)
use(Y, R):- subActivity(Z, Y), use(Z, R).

Figure 5- Some Prolog rules converted from axioms.

It is worthwhile to point out that the determination of
which activities can use which resources is made not only
using these axioms, but also using the ontological
annotations. From a concrete activity, it is possible to go
to the meta-level (through its KActivity) and determine
which types of human resources are required to perform
this type of activity (the rules above are used in this step).
Knowing which types of human resources are necessary,
the human resource allocation tool suggests some human
resources (base level) that plays the required role.

In several other situations, this approach is applied. To
illustrate a situation where the three annotation levels are
used, let’s take a look at knowledge retrieval in ODE’s
Knowledge Management (KM) infrastructure [4],
partially shown in Figure 6. When searching for some
knowledge items stored in ODE’s organizational memory,
several filtering criteria can be used. One of the most
important criteria, however, is the ontology itself. The
user can select the ontology and some of its concepts that
are related to the items he/she wants to search for
(ontological level). Then, instances of these concepts are
listed (objects from the meta-level), and the user can
select the “types” of the items wanted. Based on that,
artifacts and other knowledge items (objects from the base
level) are retrieved and presented.

In the example of Figure 6, the user selected the
software process ontology and the activity concept as
retrieval criteria. Instances of this concept (instances of
the class KActivity) are presented and he/she can select
the ones that refer to the items he/she is looking for.
Based on the selected instances of the meta-level (in the
example, Planning and Estimation), knowledge items
(instances of the base level) are presented, including
artifacts (project plans) and lessons learned and packages
of messages related to Planning and Estimation.

Figure 6- Search Service of ODE's KM Infrastructure.

4. Related Work

Few works have explored semantic issues in SEEs.
Brown and McDermid [14] were ones of the firsts to talk
about that. They proposed a classification of tool
integration levels that includes what they call “semantic
level”, which could be achieve through including
metadata in the SEE’s repository.

More recently, Oliveira et al. [3] proposed the use of
ontologies in Domain Oriented SEEs, and use the TABA
Workstation to apply their ideas. Moreover, in the context
of TABA Project, ontologies are also used to structure the
environment and to support knowledge management [15].
However, the use of ontologies in TABA does not
consider some aspects that we advocate as very important,
such as incorporating constraints defined as axioms and
the use of inferences to support the accomplishment of
some software development activities.

Concerning the way how ODE uses metadata based on
ontologies, it was defined based on several works done in
the ontology field of study, such as the one done by
Guarino [8]. Also, our approach is in conformity with the
OMG Meta-modeling Architecture [13]. The base level
corresponds to the User Object Layer (M0), the meta-
level to the Model (Metadata) Layer (M1), the ontological
level to the Meta-model Layer (M2), and the MOF model
to the Meta-meta-model Layer (M3).

5. Conclusions

During the software development, many information
resources are produced and generated. In several
situations, it is essential to establish connections between
them in order to “collect the dots”, i.e. to get a set of items
that are useful to support the accomplishment of an
activity. In this context, it is very important to capture the
semantics of the items in the SEE’s repositories, evolving
them to Semantic SEEs. Ontologies play a crucial role to
Semantic SEEs, since they can be used to annotate
information resources with semantic metadata.

In this paper, we presented our approach to evolve
ODE, a Process-centered SEE, to a Semantic SEE. This
approach is based on annotating ODE’s objects with
ontology-based metadata, and proved to be very useful.
But, some aspects should be improved. First, we should
investigate better ways to incorporate inference services
in ODE. The use of Prolog showed to be not enough for
our purposes. Some studies to use other inference
mechanisms and a modern ontology language, such as
OWL, and are being made. Other research directions that
we are following include improving our approach to
derive object models from ontologies and other
mechanisms to support ontology-based browsing of
ODE’s resource information, such as semantic maps.

Acknowledgments

This work was accomplished with the support of CNPq
and CAPES, entities of the Brazilian Government
reverted to scientific and technological development.

References

[1] W. Harrison, H. Ossher, P. Tarr, “Software Engineering
Tools and Environments: A Roadmap”, in Proc. of the
Future of Software Engineering, ICSE’2000, 263-277,
Ireland, 2000.

[2] S. Arbaoui, et alli, “A Comparative Review of Process-
Centered Software Engineering Environments”, Annals of
Software Engineering 14, 311-340, 2002.

[3] K.M. Oliveira, F. Zlot, A.R. Rocha, G.H. Travassos, C.
Galotta, C.S. Menezes, “Domain-oriented software
development environments”, The Journal of Systems and
Software 72, 145-161, 2004.

[4] R.A. Falbo, D.O. Arantes, A.C.C. Natali, “Integrating
Knowledge Management and Groupware in a Software
Development Environment”, in Proc. of the 5th Int. Conf.
on Practical Aspects of Knowledge Management, 94-105,
Austria, 2004.

[5] D. McComb, Semantics in Business Systems: The Savvy
Manager’s Guide. Morgan Kaufmann Publishers, 2004.

[6] R.A. Falbo, A.C.C. Natali, P.G. Mian, G. Bertollo, F.B.
Ruy, “ODE: Ontology-based software Development
Environment”, in Proc. of the IX Argentine Congress on
Computer Science, 1124-1135, La Plata, Argentina, 2003.

[7] I. Thomas, B.A. Nejmeh, “Definitions of Tool Integration
for Environments”, IEEE Software, 29-35, March 1992.

[8] N. Guarino, “Formal Ontology and Information Systems”,
In: Formal Ontologies in Information Systems, N. Guarino
(Ed.), IOS Press, 3-15, 1998.

[9] R.A. Falbo, C.S. Menezes, A.R.C. Rocha. “A Systematic
Approach for Building Ontologies”. In Proc. of the 6th
Ibero-American Conference on Artificial Intelligence,
Lisbon, Portugal, LNCS, vol. 1484, 349-360, 1998.

[10] J. Davies, D. Fensel, F. van Harmelen. Towards the
Semantic Web: Ontology-driven Knowledge Management,
John Wiley & Sons, 2003.

[11] P.G. Mian, R.A. Falbo, “Supporting Ontology
Development with ODEd”, Journal of the Brazilian
Computer Science, vol. 9, no. 2, 57-76, November 2003.

[12] R.A. Falbo, G. Guizzardi, G., K.C. Duarte, “An
Ontological Approach to Domain Engineering”, in Proc. of
the 14th Int. Conference on Software Engineering and
Knowledge Engineering, 351- 358, Ischia, Italy, 2002.

[13] OMG, Meta Object Facility (MOF) Specification, Version
1.3, March 2000.

[14] A.W. Brown, J.A. McDermid, “Learning from IPSE’s
Mistakes”, IEEE Software, 23-28, March 1992.

[15] G. Santos, K. Villela, L. Schnaider, A.R. Rocha, G.H.
Travassos, “Building Ontology-based Tools for a Software
Development Environment”, in Proc. of the 6th Int.
Workshop on Learning Software Organization, 19-30,
Canada, July 2004.

